Least-Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least-Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems

This paper studies least-squares parameter estimation algorithms for input nonlinear systems, including the input nonlinear controlled autoregressive IN-CAR model and the input nonlinear controlled autoregressive autoregressive moving average IN-CARARMA model. The basic idea is to obtain linear-in-parameters models by overparameterizing such nonlinear systems and to use the least-squares algori...

متن کامل

Efficient Algorithm for a Class of Least Squares Estimation Problems

We consider a problem to schedule a set of jobs on a singlemachine under the constraint that the maximum job completion timedoes not exceed a given limit. Before a job is released for processing, itmust undergo some preprocessing treatment which consumes resources.Itis assumed that the release time of a job is a positive strictly decreasingcontinuous function of the amou...

متن کامل

Nonlinear Least-squares Estimation

The paper uses empirical process techniques to study the asymptotics of the least-squares estimator for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu’s illustrates the use of t...

متن کامل

Empirical Distributions in Least Squares Estimation for Distributed Parameter Systems

We consider the estimation of error distributions in least squares identiication of distributed parameter systems. Asymptotic properties of approximate error sequences are developed. In particular, we examine consistency and asymptotic normality of empirical estimates of the error distribution. The consistency obtained is analogous to the Glivenko-Cantelli theorem. For asymptotic normality, we ...

متن کامل

Least-squares parameter estimation for systems with irregularly missing data

This paper considers the problems of parameter identification and output estimation with possibly irregularly missing output data, using output error models. By means of an auxiliary model (or reference model) approach, we present a recursive least-squares algorithm to estimate the parameters of missing data systems, and establish convergence properties for the parameter and missing output esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2012

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2012/684074